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The stability of plane-Parallel Couette Slow has been investigated in a very 
large number of works. 
of this Slow. 

The aim of most of these was to’prove the stability 
However, the whole spectrum of normal perturbations, over a 

broad range of values of the Reynolds number , was apparently not sufficiently 
investigated, although the knowledge of the whole spectrum is necessary for 
the construction of a nonline8r theory of stabilsty for Couette flow, and 
also for the Sin81 Opinion on Its stability with respect to small perturbs- 
tlons. 

Several of the lower decrements with large values of the Reynolds number 
.@ and fixed values of the wave number a 
methods [ 11. 

have been obtained by asymptotic 
Decrements in the case of small. J? were computed in [2 and 33. 

The spectrum of decrements in a broad range of variation of Reynolds number 
can be obtained, apparently, only by numerical calculation. Recently in the 
paper f 43 + 8nd next in [5], the results of such a calculation of the lower 
decrements of damped perturbations was mentioned. Later in t61 some addi- 
tional data on the behavior of the Sour.lower decrements was published. 

In the present paper the results of the calculations of the decrements 
spectrum of normal perturb8tlons of plane-parallel Couette Slow are quoted. 
We will make the calculation by the method OS Galerkdn with a system OS basis 
functions different from those used in c4 and 6). An approximation contain- 
ing.18 basis Sun&Ions will permit us to traces with sufficient accuracy, the 
,behavlor of the nine lower decrements and phase velocities of the normal per- 
turbations in the region of the number aR Srom C to 1000 . 

1. Let us consider Couette flow between the planes x = f h with the 
linear velocity profile v,- II x (s Is the coordinate along the Slow). As 
units OS measurement for velo&ty, distance, and time we will take, respec- 
tively, no, h, and ha/u (v is the kdnematlc viscosity). The current Sunc- 
tlon for smtill’normal perturbations can be represented in the form 
cp (x) exp (- It + iaz), where a is the real wave number 8nd 1 is the com- 
plex decrement. of the perturbation. The perturbation amplitude q(x) satls- 
fies the Crr-Sonmierfeld equation 

and bonndary condltlons 
p “‘pf = 0 for 2 = & 1 (2) 

The boundary value problem (l), (2) can be solved approximately by Galer- 
kin’s method. 
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For this, solution q(x) Is represented ln the form 

As the system of basis functions cf (‘Jn (1.1 It Is convenient to take the 
complete system of normal perturbation amplitudes for the liquid at rest, 
I.e. the characteristic functions of the boundary value problem (l), (2) 
with R - 0 
rov). 

(see [3 to 81). (This system of functions was proposed by Pet- 
These functions have the form 

The normalization integrals I, and the transcendental relations for the 
deteimlnatlon of the decrements of damped perturbations An(O) for the liquid at 
rest are given In [3]. The orthogonaIlty conditions of Galerkln lead to the 
system of homogeneous algebraic equations 

5 c, {(h - LL”)) 6,, + iaRH,,} = 0 (m=O,1,...,N) (4) 
*=0 

The matrix elements 
1 

H mn= 
s 

v(oJ m z ((p,,W” - azcp,U) dx 
-1 

are different from zero onI 
the matrix of the system (4 7 

for Indices of different parity. This permits 
to be brought to real form with the aid of a 

unitary transformation (for formuIas for y,, see [3]). 

It Is necessary to find the characteristic numbers A of system (4) for 
fixed numbers c and I) . !Che larger the Reynolds number and the more 

210 IT++4 I 
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I 
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Fig. 1 Fig. 2 
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spectrum levels It 
the expansion (3). 
problem Is reduced 
eighteenth order. 

is necessary to find, the more functions are required In 
In our calculation we will use 18 functions and the 
to finding the characteristic values of a reil matrix o!' 
This approximation permits us to determine with good accz- . _ . .~ racy the nine lowest aecrements In the domain of the number 

1000. In this domain the values of the decrements, obtained i<th 
frsm 0 to 

and N = 17 , are practically Indistinguishable. 
Ti = 16 

The characteristic values 
of the matrix are found by the orthogonal-power method [7]. The calculation 
of the spectrum of decrements was carried out on the 3B4M ctAparay>> (EVTsM 
"Aragats') computer in the Computing Center of the University of Ferm'. 

2. In the discussion of the slngularlties of the spectrum of decrements 
we consider, as an example, the spectra of perturbations with wave numbers 
a-1,2. These spectra are presented, respectively, In Fig.1 and 2. In 
Flg.la and 2a the real parts of x 
shown. 

i.e. the damping decrements -cc are 
In Flg.lb and 2b the square'of the phase velocity of the per&ba- 

tlons Is shown, measured In units of the fundamental flow speed, i.e.&/F;)', 
where or- (l/u) ImX. 

From Fig.1, which corresponds to the case c = 1 
0 < R < 64 all decrements x are real and cosltlve: 

we see that for 
i.e. the DertuJ?batiOns 

decay monotonously (co,< 0), and the phase velocity of the perturbations 
0.' 0 . At R I 64 a confluence of the second and third monotonous levels 
occurs and perturbations wJth complex conjugate decrements appear. These 
perturbations have identical damping decrements -cc1 and their phase velocl- 
ties or differ in sign, that Is, the perturbations travel In the stream in 
opposite dirt&Ions. For higher values of the Reynolds number we have still 
further singular points, at which confluences of the real levels occur with 
the formation of complex-conjugate pairs. 

A comparison of Figs. 1 and 2 shows a strong dependancs of the structure 
of the spectra on the wave number c . In the case c = 1 for example, 
the fourth level remains real over the whole range of the &mber rrR inves- 

Its rapid variation in the domain of &nolds,numbers from 100 to 
%atiz*due, apparently, to the strength of its interaction with some nelgh- 
boring levels. For Q - 2 a confluence of the fourtkand fifth levels 
occurs; the eighth level, however, turns out to be real. For other values 
of the wave number the form of the spectrum may differ from that shown ln 
Figs. 1 and 2, but the general rules for the intersections of the perturba- 
tion decrements, formulated In [ 31, always hold. 

A comparison of the results of the calculations with the values of the 
damp&g decrements for the lower levels, contained ln c4 and 63, discloses 
a good correspondence. The new data, obtained in the present work, on the 
spectrum of perturbations for Couette flow confirms the conclusions on the 
stability of this flow. 

We make use of this opportunity to thank E.M. Zhukhovitskil for hls guld- 
ante and assistance ln this work. 
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